Mahmood Lab releases PathChat, a vision-language AI assistant for Pathology

Mahmood Lab releases PathChat, a vision-language AI assistant for Pathology

Developed by the Mahmood Lab, PathChat is a vision-language AI assistant for Pathology that can analyze histology images and answer diverse pathology-related queries.

See a demonstration of PathChat.

The PathChat publication can be found in the June edition of Nature here:  https://www.nature.com/articles/s41586-024-07618-3 

Post Doctoral Fellow in Deep Learning for Microbiome Spatial Omics – Gerber Lab

The Gerber Lab (http://gerber.bwh.harvard.edu) is a multidisciplinary group at Brigham and Women’s Hospital/Harvard Medical School that develops novel computational models and high-throughput experimental systems to understand the role of the microbiota in human diseases, and applies these findings to develop new diagnostic tests and therapies. A long-standing and continuing focus of the lab is on incorporating principled probabilistic models into machine learning methods. The director of the lab, Dr. Georg Gerber, MD, PhD, MPH, uses his unique expertise, combining deep learning method development, medical microbiology, and human pathology, to leverage cutting-edge technologies to tackle scientifically and clinically important problems.

We are looking for an exceptional researcher who will play a major role in new initiatives in the lab to develop novel deep learning (DL) approaches to further understanding of the spatial organization of the microbiome–the trillions of microbes living on and within us—and its interactions with mammalian cells. The successful candidate will be highly motivated and creative, taking a lead role in developing new deep learning-based methods, analyzing data, and interpreting results. Although experience analyzing data from biological systems is required, microbiome specific knowledge is not.

Qualifications:

  • PhD in Computer Science, Computational Biology, or other highly quantitative discipline.
  • Outstanding publication track record.
  • Strong mathematical background and skills.
  • Experience developing DL methods.
  • Experience analyzing data from biological systems, including sequencing data.
  • Solid programming skills in Python, including PyTorch.
  • Superior verbal and written communication skills, and ability to work on multidisciplinary teams.

Environment:  the Gerber Lab is located in the Brigham and Women’s Hospital Division of Computational Pathology (http://comp-path.bwh.harvard.edu) at Harvard Medical School (HMS). With a recent grant from the Massachusetts Life Science center, the Division has built the Lab for AI/Deep Learning for the Microbiome, which has a state-of-the-art GPU cluster for model development, training and deployment. BWH is part of the greater Longwood Medical Area in Boston, a rich, stimulating environment conducive to intellectual development and research collaborations, which includes HMS, Harvard School of Public Health and Boston Children’s Hospital.

To apply: email a single PDF including cover letter, CV, brief research statement and a list of at least three references to Dr. Georg Gerber (ggerber@bwh.harvard.edu).

We are an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, gender identity, sexual orientation, pregnancy and pregnancy-related conditions or any other characteristic protected by law.

Nature Medicine Publications detail Mahmood Lab’s Design of AI Foundation Models to Advance Pathology

Nature Medicine Publications detail Mahmood Lab’s Design of AI Foundation Models to Advance Pathology

Two foundation models for pathology AI developed by the Mahmood Lab published in Nature Medicine: UNI and CONCH.

Foundation models, advanced artificial intelligence systems trained on large-scale datasets, hold the potential to provide unprecedented advancements for the medical field. In computational pathology (CPath), these models may excel in diagnostic accuracy, prognostic insights, and predicting therapeutic responses.

These foundation models were adapted to over 30 clinical, diagnostic needs, including disease detection, disease diagnosis, organ transplant assessment, and rare disease analysis. The new models overcame limitations posed by current models, performing well not only for the clinical tasks the researchers tested but also showing promise for identifying new, rare and challenging diseases.

Technical Research Assistant I – Gibson and Walt Labs

A position is open for a full-time research assistant (RA) in the Department of Pathology at Brigham and Women’s Hospital. Under the supervision of Dr. David Walt and Dr. Travis Gibson, the selected candidate will provide technical assistance for research pertaining to the human gut microbiome and its interactions with the host immune system. This position will provide the opportunity to work with histologic, immunohistochemical, molecular cytogenetic, and in situ protocols in a state-of-the-art lab environment.

Among other responsibilities, the selected candidate will perform multiplexed error-robust fluorescence in situ hybridization (MERFISH). The RA will perform all stages of the MERFISH protocol, including tissue fixation, permeabilization, hybridization, embedding, and clearing, in addition to imaging using a custom-built semi-automated robotic system built by a team at BWH. The selected candidate will primarily work independently to prepare and process tissue samples while optimizing the respective protocols, and will work closely with the surrounding research team to interpret the resulting data. Previous experience with protocols involving RNA is considered a strong asset. Other responsibilities of the selected candidate include assistance with the execution of the ultrasensitive single molecule array (Simoa) assay. Research conducted by the candidate in collaboration with the research team will provide new insights into the dynamics of the gut microbiome and will address underlying biological questions.

The responsibilities of the selected candidate may include:

  1.  Independently performing routine and non-routine experimental protocols of moderate to high complexity. Experimental work will include preparing buffers and reagents without RNase contamination and evaluating the reagents for viability.
  2.  Performing literature searches relevant to the execution of the required protocols.
  3. In collaboration with the PIs or Research Manager, modifying existing research techniques and potentially establishing new techniques.
  4. Communicating progress professionally with collaborators and with the scientific community.
  5. Coordinating and scheduling tests and procedures, and documenting experimental work accurately and in detail.
  6. Ordering laboratory supplies related to their assigned tasks.
  7. Following all lab safety protocols.

BA/BS in biological/physical science required.  Some prior research preferred but not essential.

Skills/Abilities/Competencies Required:

  • Sound analytical and organizational skills.
  • Requires good oral and written communication skills.
  • Must be able to logically and effectively structure tasks and set priorities.
  • Ability to identify potential problems and troubleshoot solutions.

About the lab environment

The Gibson Lab is located in the Division of Computational Pathology at Brigham and Women’s Hospital (BWH), a Harvard Medical School teaching hospital, which is the second largest non-university recipient of NIH research funding. The broad mandate of the Division of Computational Pathology is to develop and apply advanced computational methods for furthering the understanding, diagnosis, and treatment of human diseases. The Division is situated within the BWH Department of Pathology, which houses over 40+ established investigators, 50+ postdoctoral research fellows, and 100+ research support staff. In addition, BWH is part of the greater Longwood Medical Area in Boston, a rich, stimulating environment conducive to intellectual development and research collaborations, which includes the Harvard Medical School quad, Harvard School of Public Health, Boston Children’s Hospital, and the Dana Farber Cancer Institute. Many of our lab members also have appointments at the Massachusetts Institute of Technology and the Broad Institute.

Applications Process

Submit: (1) cover letter; (2) curriculum vitae to: Utkarsh Sharma, usharma1@bwh.harvard.edu

Graduate Students – Gerber Lab

I am always excited to work with talented graduate students with interests relevant to my lab, which focuses on developing novel machine learning/computational biology/wet lab approaches to further understanding of the microbiome–the trillions of microbes living on and within us. This fascinating, complex and dynamic ecosystem is crucial for human health, and when disrupted may contribute to a variety of diseases including infections, arthritis, allergies, cancer, heart and bowel disorders.

In general, I can only be a primary advisor (and provide financial support) for students enrolled at Harvard or MIT. However, I am open to co-advising students at other institutions.

If you’re interested, email me at ggerber#bwh.harvard.edu. Please include your CV and a brief description of your research interests.

Students should have a high level of interest in:

  • Developing and applying new technologies to biomedical problems.
  • Advancing knowledge of the microbiome and its role in human health and disease.
  • Having your work make an impact on healthcare outcomes.
  • Working on an interdisciplinary team and collaborating with computational, wet lab and clinical scientists.

About the lab: the Gerber Lab develops novel statistical machine learning models and high-throughput experimental systems to understand the role of the microbiota in human diseases, and applies these findings to develop new diagnostic tests and therapies. A particular focus of the Gerber Lab is understanding dynamic behaviors of host-microbial ecosystems. Our work in this area includes Bayesian statistical machine learning methods for discovering temporal patterns in microbiome data, inferring dynamical systems models from microbiome time-series data, or predicting host status from microbiome time-series data with human interpretable rules. We have applied these methods to a number of clinically relevant questions including understanding dynamic effects of antibiotics, infections and dietary changes on the microbiome, and designing bacteriotherapies for C. difficile infection and food allergy. We also apply our methods to synthetic biology problems, to engineer consortia of bacteria for diagnostic and therapeutic purposes.

Environment:  the Gerber Lab is located in the Division of Computational Pathology, which Dr. Gerber heads, at Brigham and Women’s Hospital (BWH) at Harvard Medical School (HMS), and the Massachusetts Host-Microbiome Center, which Dr. Gerber co-directs. BWH, an HMS affiliated teaching hospital is adjacent to the HMS main quad and is the second largest non-university recipient of NIH research funding. The broad mandate of the BWH Division of Computational Pathology is to develop and apply advanced computational methods for furthering the understanding, diagnosis and treatment of human diseases. The Division is situated within the BWH Department of Pathology, which houses over 40+ established investigators, 50+ postdoctoral research fellows, and 100+ research support staff. In addition, BWH is part of the greater Longwood Medical Area in Boston, a rich, stimulating environment conducive to intellectual development and research collaborations, which includes HMS, Harvard School of Public Health, Boston Children’s Hospital and the Dana Farber Cancer Institute.

Computational Biology (ML4Bio) Postdoctoral Fellow – Gibson Lab

Opening for a Postdoctoral Research Fellow to join the Gibson Lab https://gibsonlab.io at Harvard Medical School and Brigham and Women’s Hospital. We leverage tools from machine learning and control theory to understand biological systems. Control theoretic concepts are integrated both in the design of our optimization schemes and statistical machine learning models, as well as in the design of our in vitro and in vivo experiments. Our main area of focus is the microbiome and microbial dynamics more specifically. Applications include the design of bacteriotherapies (bugs-as-drugs), developing methods to learn microbial dynamics at ecosystem-scale, studying the impact of phages on microbial communities, methods for tracking low abundance pathogens, and methods for integrating multiple data modalities and prior knowledge (from other studies or databases) in time-series models. We focus on Bayesian methods that propagate measurement uncertainty throughout the model so that we can access confidence in model parameters and to help prioritize follow-up experiments. ML techniques applied include variational inference, Bayesian non-parametric models, and relaxation techniques (for making discrete models differentiable).

The specific project(s) you will be working on will fall under one of the following grants. Follow the links below for more details:

The candidate will also be encouraged to design their own experiments as well, which would then be carried out by staff in the germ-free mouse facility or in a collaborating wet lab. In addition to addressing our biological questions we also include key experimental components that can aid in validating our methods that would otherwise not be included in a purely hypothesis driven experiment. For a candidate wanting some wet lab experience we are looking to develop new single-molecule enzyme-linked immunosorbent assays (digital ELISA) to measure low abundance host inflammatory markers in feces (please mention this explicitly in your cover letter if interested).

Qualifications

  • PhD in computer science, applied mathematics, ecology, computational biology, systems biology, statistics, or other quantitative discipline
  • Excellent publication track record
  • Strong mathematical background with track record developing novel models and methods
  • Solid programming skills in Python; this isn’t a software engineering job, but you will need to be able to develop efficient implementations and apply your work to real biomedical data
  • Ability to reside in the U.S. and legally work in the country.

About the lab environment

The Gibson Lab is located in the Division of Computational Pathology at Brigham and Women’s Hospital (BWH), a Harvard Medical School teaching hospital, which is the second largest non-university recipient of NIH research funding. The broad mandate of the Division of Computational Pathology is to develop and apply advanced computational methods for furthering the understanding, diagnosis, and treatment of human diseases. The Division is situated within the BWH Department of Pathology, which houses over 40+ established investigators, 50+ postdoctoral research fellows, and 100+ research support staff. In addition, BWH is part of the greater Longwood Medical Area in Boston, a rich, stimulating environment conducive to intellectual development and research collaborations, which includes the Harvard Medical School quad, Harvard School of Public Health, Boston Children’s Hospital, and the Dana Farber Cancer Institute. Many of our lab members also have appointments at the Massachusetts Institute of Technology and the Broad Institute.

Applications Process

Submit: (1) brief research statement (not to exceed 2 pages); (2) curriculum vitae; (3) two most relevant publications; (4) names and contact information of three individuals who can serve as references to: Travis Gibson, tegibson@bwh.harvard.edu. If you wish to chat briefly over Zoom before submitting materials to learn more details about our ongoing work, please inquire about this possibility.

We are an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, gender identity, sexual orientation, pregnancy and pregnancy-related conditions or any other characteristic protected by law.

Gerber Lab awarded $3.1 Million Five Year NIH-NIGMS R35 Grant “Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes”

Gerber Lab awarded $3.1 Million Five Year NIH-NIGMS R35 Grant “Probabilistic deep learning models and integrated biological experiments for analyzing dynamic and heterogeneous microbiomes”

This work will leverage deep learning technologies to advance the microbiome field beyond finding associations in data, to accurately predicting the effects of perturbations on microbiota, elucidating mechanisms through which the microbiota affects the host, and improving bacteriotherapies to enable their success in the clinic. New deep learning models will be developed that address specific challenges for the microbiome, including noisy/small datasets, highly heterogenous human microbiomes, the need for direct interpretability of model outputs, complex multi-modal datasets, and constraints imposed by biological principles. Computational models and biological experiments will be directly coupled through reinforcing cycles of predicting, testing predictions with new experiments, and improving models. An important objective will also be to make computational tools widely available to the research community, through release of quality open-source software.

RePORTER Link

 

Mahmood receives 2023 Young Mentors Award from Harvard Medical School

Mahmood receives 2023 Young Mentors Award from Harvard Medical School

Faisal Mahmood, PhD received the 2023 Young Mentor Award from Harvard Medical School for his outstanding contributions to mentorship.

The Young Mentor Award is one of several Excellence in Mentoring Awards that HMS established to recognize the value of quality mentoring relationships and the impact they have on the professional development and career advancement in medicine, teaching, research and administration. Created in 2005, the Young Mentor Award honors HMS faculty who are still in the early stages of their career but are devoting their time to providing mentoring for others.

View Press Release

Gerber Lab at ICML Workshop on Computational Biology 2023

Gerber Lab at ICML Workshop on Computational Biology 2023

The ICML Workshop on Computational Biology (WCB) highlights how ML approaches can be tailored to making both translational and basic scientific discoveries with biological data, such as genetic sequences, cellular features or protein structures and imaging datasets, among others. It aims to bring together interdisciplinary ML researchers working in areas such as computational genomics; neuroscience; metabolomics; proteomics; bioinformatics; cheminformatics; pathology; radiology; evolutionary biology; population genomics; phenomics; ecology, cancer biology; causality; representation learning and disentanglement to present recent advances and open questions to the machine learning community.

The Gerber Lab had the following two papers accepted:

Gerber GK, Bhattarai SK, Du M, Glickman MS, Bucci V. Discovery of Host-Microbiome Interactions Using Multi-Modal, Sparse, Time-Aware, Bayesian Network-Structured Neural Topic Models. International Conference on Machine Learning Workshop on Computational Biology, 2023.

Uppal G, Urtecho G, Richardson M, Moody T, Wang HH, Gerber GK. MC-SPACE: Microbial communities from spatially associated counts engine. International Conference on Machine Learning Workshop on Computational Biology, 2023.

 

Algorithmic fairness in artificial intelligence for medicine and healthcare: Nature Biomedical Engineering

Algorithmic fairness in artificial intelligence for medicine and healthcare: Nature Biomedical Engineering

In healthcare, the development and deployment of insufficiently fair systems of artificial intelligence (AI) can undermine the delivery of equitable care. Assessments of AI models stratified across subpopulations have revealed inequalities in how patients are diagnosed, treated and billed. In this Perspective, we outline fairness in machine learning through the lens of healthcare, and discuss how algorithmic biases (in data acquisition, genetic variation and intra-observer labelling variability, in particular) arise in clinical workflows and the resulting healthcare disparities. We also review emerging technology for mitigating biases via disentanglement, federated learning and model explainability, and their role in the development of AI-based software as a medical device.

Chen RJ, Wang JJ, Williamson DFK, Chen TY, Lipkova J, Lu MY, Sahai S, Mahmood F. Algorithmic fairness in artificial intelligence for medicine and healthcare. Nat Biomed Eng. 2023 06; 7(6):719-742. PMID: 37380750.