January ABC Seminar: Stephen Pfohl, PhD – Google Research – “Algorithmic fairness and responsible AI for health equity”

January ABC Seminar: Stephen Pfohl, PhD – Google Research – “Algorithmic fairness and responsible AI for health equity”

Stephen PfohlIn this talk, I aim to present insights into the design of evaluations of machine learning and AI systems to assess properties related to algorithmic fairness and health equity. I argue that such evaluations are contextual and require specification of the intended use, target population, and assumptions regarding the data generating process and measurement mechanism. Through examples from my research, I argue that causal graphical models can serve as key tools for context specification and can aid in understanding and appropriate use of analytical algorithmic fairness techniques. I will further discuss recent work related to evaluation of equity-related biases in large language models.

Speaker:  Stephen Pfohl, PhD
Affiliation: Google Research
Position:  Senior Research Scientist
Host: Anurag Vaidya, Mahmood Lab

Date: Monday January 27, 2025
Time: 4:00-5:00PM ET
Zoom: https://partners.zoom.us/j/82163676866
Meeting ID: 821 6367 6866

Research Links: Personal siteGoogle Scholar

Stephen Pfohl is a senior research scientist at Google Research. His work focuses on the incorporation of fairness, distribution shift, and equity considerations into the design and evaluation of machine learning systems in healthcare contexts. Stephen earned his PhD in Biomedical Informatics from Stanford University.

November ABC Seminar: Brian Hie, PhD – Stanford University – “Sequence modeling from molecular to genome scale with Evo”

November ABC Seminar: Brian Hie, PhD – Stanford University – “Sequence modeling from molecular to genome scale with Evo”

The genome is a sequence that encodes the DNA, RNA, and proteins orchestrating an organism’s function. We present Evo, a long-context genomic foundation model with a frontier architecture trained on millions of prokaryotic and phage genomes, and report the first scaling laws on DNA to complement observations in language and vision. Evo generalizes across DNA, RNA, and proteins, enabling zero-shot function prediction competitive with domain-specific language models and the generation of functional CRISPR-Cas and transposon systems, representing the first examples of protein-RNA and protein-DNA co-design with a language model. Evo also learns how small mutations affect whole-organism fitness and generates megabase-scale sequences with plausible genomic architecture. These prediction and generation capabilities span molecular to genome scales of complexity, advancing our understanding and control of biology.

Title: Sequence modeling from molecular to genome scale with Evo
Speaker:  Brian Hie, PhD
Affiliation: Stanford University, Chemical Engineering and Data Science
Position:  Assistant Professor
Host: Jiening Zhu, PhD – Gerber Lab

Date: Monday November 18, 2024
Time: 4:00-5:00PM ET
Zoom: https://partners.zoom.us/j/82163676866
Meeting ID: 821 6367 6866

Brian Hie is an Assistant Professor of Chemical Engineering at Stanford University, the Dieter Schwarz Foundation Stanford Data Science Faculty Fellow, and an Innovation Investigator at Arc Institute, where his group conducts research at the intersection of biology and machine learning.

Click here to be added to our mail list.

Faisal Mahmood, PhD featured on Eric Topol’s “Ground Truths”

Faisal Mahmood, PhD featured on Eric Topol’s “Ground Truths”

Faisal Mahmood, Associate Professor of Pathology, was  featured on the July 28th, 2024 episode of Dr. Eric Topol’s Ground Truths podcast to discuss A.I.’s transformation of Pathology.  Ground Truths is a weekly podcast addressing facts, data, and analytics about biomedical matters.

 

October ABC Seminar: Zhi Huang, PhD – Univ of Pennsylvania – “A pathologist–AI collaboration framework for enhancing diagnostic accuracies and efficiencies”

October ABC Seminar: Zhi Huang, PhD – Univ of Pennsylvania – “A pathologist–AI collaboration framework for enhancing diagnostic accuracies and efficiencies”

The integration of Artificial Intelligence (AI) in clinical pathology has faced significant hurdles due to constraints in data collection and challenges associated with model transparency and interpretability.  In this talk, we introduce a novel digital pathology AI framework named nuclei.io, which leverages active learning and incorporates real-time feedback from human experts. This innovative approach empowers pathologists to quickly generate diverse datasets and develop models for various clinical applications. To demonstrate the effectiveness of our framework, we conducted two user studies employing such human–AI collaboration strategy. These studies focused on two key areas: the identification of plasma cells in endometrial biopsies and the detection of colorectal cancer metastasis in lymph nodes. The results from these studies showed significant enhancements in sensitivity, accuracy, and diagnostic efficiency with the integration of AI. Our findings underscore the benefits of the human-in-the-loop AI framework, highlighting its potential to transform the field of digital pathology.

Speaker:  Zhi Huang, PhD
Affiliation: Perelman School of Medicine, University of Pennsylvania
Position:  Assistant Professor (incoming), Dept of Pathology and Laboratory Medicine, Dept of Biostatistics, Epidemiology and Informatics
Research Links: https://www.zhihuang.ai
Host: Andrew Song, PhD – Mahmood Lab

Date: Monday, October 21, 2024
Time: 4:00-5:00PM ET
Zoom: https://partners.zoom.us/j/82163676866
Meeting ID: 821 6367 6866

Zhi Huang is an incoming tenure-track assistant professor at the University of Pennsylvania starting January 2025. He obtained his PhD in Electrical and Computer Engineering (ECE) from Purdue University in August 2021. Since August 2021, He has been a postdoctoral fellow at Stanford University. His research focuses on AI/ML innovation and its application to medicine, with topics including vision-language foundation model for pathology, human-AI collaboration, neurodegenerative diseases, etc. His research has drawn wide public attention (including the New York Times, Stanford Magazine, and Stanford Scope) and has resulted in translational innovations. In 2022, Zhi Huang co-founded nuclei.io — a human-in-the-loop AI platform for digital pathology. It was selected as one of only 9 Stanford Catalyst 2023 cohort innovations.

Click here to be added to our mail list.

ABC Hybrid Seminar: Bokai Zhu, PhD – Ragon Institute – “Integration of spatial-omics and single-cell data across modalities with weakly linked features”

ABC Hybrid Seminar: Bokai Zhu, PhD – Ragon Institute – “Integration of spatial-omics and single-cell data across modalities with weakly linked features”

Bokai ZhuAdvancements in single-cell and spatial-omics technologies have created a need for integrating datasets across modalities with limited and weakly correlated features, such as those between spatial proteomics and transcriptomics. Existing tools, usually designed for strongly linked data, often fail in these scenarios. Recently, we have developed a series of methods (Mario and MaxFuse), that improves integration by refining weak correlations between modalities through an iterative smoothing and co-embedding process, and achieves single-cell level matching across these weakly linked modalities, enabling in-depth understanding of tissue micro-environments.

Speaker:  Bokai Zhu, PhD
Affiliation: Ragon Institute of MGH, Harvard and MIT, Broad Institute, MIT
Position:  Postdoctoral Research Fellow
Research Links: https://bokaizhu.github.io/
Host: Muhammad Shaban, PhD – Mahmood Lab

Date: Monday, September 23, 2024
Time: 1:00-2:00PM ET
In-person: Duncan Reid Conference Room (directions below)
Zoom: https://partners.zoom.us/j/82163676866
Meeting ID: 821 6367 6866

Bokai Zhu is currently a postdoctoral researcher supervised by Prof. Alex Shalek at the Ragon Institute at MGH, MIT, and Harvard. Prior to that, Dr. Zhu obtained his PhD in Microbiology and Immunology from Stanford University, under the supervision of Prof. Garry Nolan. He received a bachelor’s degree in Biology from Cornell University and Zhejiang University. Dr. Zhu’s doctoral research focused on: 1) Experimental assay development for multiplex imaging platforms; 2) Computational algorithm development for single-cell multi-omic integrations; 3)Application of the above tools in various biological systems.

Click here to be added to our mail list.

Dan MacDonald awarded Banting Fellowship

Dan MacDonald awarded Banting Fellowship

Daniel MacDonald, a Research Fellow in the Gibson Lab, is a 2024 recipient of the Banting Postdoctoral Fellowship.

The Banting Postdoctoral Fellowship program provides funding to the very best postdoctoral applicants, both nationally and internationally, who will positively contribute to the country’s economic, social and research-based growth. The award is designed for Canadian citizens, permanent residents of Canada and foreign citizens of Canada.

Dan is a second year fellow researching machine learning for the gut microbiome. Researchers typically study the microbiome by counting the different species of microbes in a stool sample—there may be hundreds to thousands of species and trillions of individual microbes. Stool samples are a good representation of the microbes found in the colon, but they underrepresent species in the small intestine and species that stick to the intestinal walls, which may play a critical role in maintaining the host’s bodily functions. Previously, researchers in the lab developed uncertainty-aware machine learning (ML) models of the gut microbiome that can predict how the hundreds-to-thousands of microbial species grow and die in response to changes in diet. These ML models were trained using stool samples, which underrepresent species upstream from the colon, and aren’t designed to accommodate other types of samples, such as microbe samples from tissue in the small intestine. In this research, Dan and other lab members are developing new uncertainty-aware ML models that will be trained not only on stool samples, but also using microbe measurements throughout the intestinal tract. This will provide insight into the as-yet unknown microbial interactions of the entire intestinal tract. They are designing this model to flexibly incorporate new measurement modalities, such as advanced imaging techniques, which will allow them to quickly adapt this model for new experiments in the ever-growing microbiome field, shedding light on the hidden inhabitants of our bodies.

I’m grateful to be a recipient of a 2024 Banting Postdoctoral Fellowship. This is shared achievement, as it was only possible with the support and countless opportunities provided by Dr. Travis Gibson and our team in the Division of Computational Pathology at BWH. I’d also like to express gratitude to my PhD supervisor, Prof. David Steinman, who laid the foundations for my academic pursuits and shaped my approach to research. It is truly an honour to receive this fellowship from NSERC, and I look forward to making meaningful scientific advancements through the completion of this research.  –Dan MacDonald

 

Mahmood Lab releases PathChat, a vision-language AI assistant for Pathology

Mahmood Lab releases PathChat, a vision-language AI assistant for Pathology

Developed by the Mahmood Lab, PathChat is a vision-language AI assistant for Pathology that can analyze histology images and answer diverse pathology-related queries.

See a demonstration of PathChat.

The PathChat publication can be found in the June edition of Nature here:  https://www.nature.com/articles/s41586-024-07618-3 

May ABC Seminar: Jean du Terrail, PhD – Owkin – “Federated Learning in Healthcare in the Real-World: Examples and Practical Challenges”

May ABC Seminar: Jean du Terrail, PhD – Owkin – “Federated Learning in Healthcare in the Real-World: Examples and Practical Challenges”

With the never-ending revolutions of data-driven approaches that started already more than a decade ago, it is surprising at first that the pace of ML discoveries in medicine seems substantially slower than the ones found in consumer applications such as ChatGPT. The answer to that paradox is relatively simple: in healthcare, data is hard to access as it is expensive and siloed in medical institutions and thus data-hungry methods trained on only one center on limited data often fail to generalize to another. In order to break those silos while protecting patient data and thus enabling new medical discoveries via ML, federated learning (FL) is a promising approach. However, in practice, applying FL in real-life contexts presents numerous challenges. This talk will use some of the FL research projects that Owkin has spearheaded in order to illustrate the realities of FL in healthcare and discuss the remaining milestones on the road to FL technologies and ML becoming the new engine of medicine research.

Special Seminar: Anshul Kundaje, PhD – “Using deep learning models to debug regulatory genomics experiments and decode cis-regulatory syntax”

Special Seminar: Anshul Kundaje, PhD – “Using deep learning models to debug regulatory genomics experiments and decode cis-regulatory syntax”

BWH Computational Pathology Special Seminar

Title: Using deep learning models to debug regulatory genomics experiments and decode cis-regulatory syntax
Speaker: Anshul Kundaje, PhD
Affiliation: Stanford University
Position: Associate Professor, Genetics and Computer Science

Date: Monday April 22, 2024
Time: 4:00PM-5:00PM ET
Zoom: https://partners.zoom.us/j/82163676866
Meeting ID: 821 6367 6866

Anshul Kundaje, PhD, is Associate Professor of Genetics and Computer Science at Stanford University. His primary research area is large-scale computational regulatory genomics. The Kundaje lab develops deep learning models of gene regulation and model interpretation methods to decipher non-coding DNA and genetic variation associated with disease. Dr. Kundaje has led computational efforts to develop widely used resources in collaboration with several NIH consortia including ENCODE, Roadmap Epigenomics and IGVF. Dr. Kundaje is a recipient of the 2016 NIH Director’s New Innovator Award and the 2014 Alfred Sloan Fellowship.

Links: The Encyclopedia of DNA Elements (ENCODE) Project, Stanford University, MIT

Nature Medicine Publications detail Mahmood Lab’s Design of AI Foundation Models to Advance Pathology

Nature Medicine Publications detail Mahmood Lab’s Design of AI Foundation Models to Advance Pathology

Two foundation models for pathology AI developed by the Mahmood Lab published in Nature Medicine: UNI and CONCH.

Foundation models, advanced artificial intelligence systems trained on large-scale datasets, hold the potential to provide unprecedented advancements for the medical field. In computational pathology (CPath), these models may excel in diagnostic accuracy, prognostic insights, and predicting therapeutic responses.

These foundation models were adapted to over 30 clinical, diagnostic needs, including disease detection, disease diagnosis, organ transplant assessment, and rare disease analysis. The new models overcame limitations posed by current models, performing well not only for the clinical tasks the researchers tested but also showing promise for identifying new, rare and challenging diseases.