Dan MacDonald awarded Banting Fellowship

Dan MacDonald awarded Banting Fellowship

Daniel MacDonald, a Research Fellow in the Gibson Lab, is a 2024 recipient of the Banting Postdoctoral Fellowship.

The Banting Postdoctoral Fellowship program provides funding to the very best postdoctoral applicants, both nationally and internationally, who will positively contribute to the country’s economic, social and research-based growth. The award is designed for Canadian citizens, permanent residents of Canada and foreign citizens of Canada.

Dan is a second year fellow researching machine learning for the gut microbiome. Researchers typically study the microbiome by counting the different species of microbes in a stool sample—there may be hundreds to thousands of species and trillions of individual microbes. Stool samples are a good representation of the microbes found in the colon, but they underrepresent species in the small intestine and species that stick to the intestinal walls, which may play a critical role in maintaining the host’s bodily functions. Previously, researchers in the lab developed uncertainty-aware machine learning (ML) models of the gut microbiome that can predict how the hundreds-to-thousands of microbial species grow and die in response to changes in diet. These ML models were trained using stool samples, which underrepresent species upstream from the colon, and aren’t designed to accommodate other types of samples, such as microbe samples from tissue in the small intestine. In this research, Dan and other lab members are developing new uncertainty-aware ML models that will be trained not only on stool samples, but also using microbe measurements throughout the intestinal tract. This will provide insight into the as-yet unknown microbial interactions of the entire intestinal tract. They are designing this model to flexibly incorporate new measurement modalities, such as advanced imaging techniques, which will allow them to quickly adapt this model for new experiments in the ever-growing microbiome field, shedding light on the hidden inhabitants of our bodies.

I’m grateful to be a recipient of a 2024 Banting Postdoctoral Fellowship. This is shared achievement, as it was only possible with the support and countless opportunities provided by Dr. Travis Gibson and our team in the Division of Computational Pathology at BWH. I’d also like to express gratitude to my PhD supervisor, Prof. David Steinman, who laid the foundations for my academic pursuits and shaped my approach to research. It is truly an honour to receive this fellowship from NSERC, and I look forward to making meaningful scientific advancements through the completion of this research.  –Dan MacDonald

 

Mahmood Lab releases PathChat, a vision-language AI assistant for Pathology

Mahmood Lab releases PathChat, a vision-language AI assistant for Pathology

Developed by the Mahmood Lab, PathChat is a vision-language AI assistant for Pathology that can analyze histology images and answer diverse pathology-related queries.

See a demonstration of PathChat.

The PathChat publication can be found in the June edition of Nature here:  https://www.nature.com/articles/s41586-024-07618-3 

Post Doctoral Fellow in Deep Learning for Microbiome Spatial Omics – Gerber Lab

The Gerber Lab (http://gerber.bwh.harvard.edu) is a multidisciplinary group at Brigham and Women’s Hospital/Harvard Medical School that develops novel computational models and high-throughput experimental systems to understand the role of the microbiota in human diseases, and applies these findings to develop new diagnostic tests and therapies. A long-standing and continuing focus of the lab is on incorporating principled probabilistic models into machine learning methods. The director of the lab, Dr. Georg Gerber, MD, PhD, MPH, uses his unique expertise, combining deep learning method development, medical microbiology, and human pathology, to leverage cutting-edge technologies to tackle scientifically and clinically important problems.

We are looking for an exceptional researcher who will play a major role in new initiatives in the lab to develop novel deep learning (DL) approaches to further understanding of the spatial organization of the microbiome–the trillions of microbes living on and within us—and its interactions with mammalian cells. The successful candidate will be highly motivated and creative, taking a lead role in developing new deep learning-based methods, analyzing data, and interpreting results. Although experience analyzing data from biological systems is required, microbiome specific knowledge is not.

Qualifications:

  • PhD in Computer Science, Computational Biology, or other highly quantitative discipline.
  • Outstanding publication track record.
  • Strong mathematical background and skills.
  • Experience developing DL methods.
  • Experience analyzing data from biological systems, including sequencing data.
  • Solid programming skills in Python, including PyTorch.
  • Superior verbal and written communication skills, and ability to work on multidisciplinary teams.

Environment:  the Gerber Lab is located in the Brigham and Women’s Hospital Division of Computational Pathology (http://comp-path.bwh.harvard.edu) at Harvard Medical School (HMS). With a recent grant from the Massachusetts Life Science center, the Division has built the Lab for AI/Deep Learning for the Microbiome, which has a state-of-the-art GPU cluster for model development, training and deployment. BWH is part of the greater Longwood Medical Area in Boston, a rich, stimulating environment conducive to intellectual development and research collaborations, which includes HMS, Harvard School of Public Health and Boston Children’s Hospital.

To apply: email a single PDF including cover letter, CV, brief research statement and a list of at least three references to Dr. Georg Gerber (ggerber@bwh.harvard.edu).

We are an equal opportunity employer and all qualified applicants will receive consideration for employment without regard to race, color, religion, sex, national origin, disability status, protected veteran status, gender identity, sexual orientation, pregnancy and pregnancy-related conditions or any other characteristic protected by law.