Faisal Mahmood, PhD featured on Eric Topol’s “Ground Truths”

Faisal Mahmood, PhD featured on Eric Topol’s “Ground Truths”

Faisal Mahmood, Associate Professor of Pathology, was  featured on the July 28th, 2024 episode of Dr. Eric Topol’s Ground Truths podcast to discuss A.I.’s transformation of Pathology.  Ground Truths is a weekly podcast addressing facts, data, and analytics about biomedical matters.

 

Jakob Nikolas Kather MD, Msc – “Deep Learning-based biomarkers for precision oncology”

Jakob Nikolas Kather MD, Msc – “Deep Learning-based biomarkers for precision oncology”

Precision oncology requires complex biomarkers which are often based on molecular and genetic tests of tumor tissue. For many of these tests, universal implementation in clinical practice is limited. However, for virtually every cancer patient, tissue slides stained with hematoxylin and eosin (H&E) are available. Deep Learning can extract biomarkers for better treatment decisions from these images. This talk will summarize the state of the art of Deep Learning in oncology for precision oncology biomarkers. It will cover the technical foundations, emerging use cases and established applications which are available for clinical use already.

Prof. Dr. Jakob Nikolas Kather, MD, MSc
Else Kröner Professor for Clinical Artificial Intelligence
Technical University, Dresden

Professor Jakob Kather holds dual appointments in medicine and computer science at the Technical University (TU) Dresden, Germany, serves as a senior physician in medical oncology at the University Hospital Dresden and holds an additional affiliation with the National Center for Tumor Diseases (NCT) in Heidelberg. His research is focused on applying artificial intelligence in precision oncology. Prof. Kather’s research team at TU Dresden is using deep learning techniques to analyze a spectrum of clinical data, including histopathology, radiology images, textual records, and multimodal datasets. Guided by the belief that medical and tech expertise needs to be combined, medical researchers in his team learn computer programming and data analysis, while computer scientists are immersed in cancer biology and oncology. Prof. Kather chairs the “Working group on Artificial Intelligence” at the German Society of Hematology and Oncology (DGHO) and is a member of the pathology task force of the American Association for Cancer Research (AACR). His work is supported by numerous European and national grants, which enable the team to develop new deep learning methods for medical data analysis techniques and to apply them in precision oncology.

Hybrid Talk
In person: TBD
On Zoom

Time: TBD

Hosted by:  Mahmood Lab

Efrat Muller, Tel Aviv University – “Methods for integrating metagenomics and metabolomics data”

Efrat Muller, Tel Aviv University – “Methods for integrating metagenomics and metabolomics data”

Speaker Name: Efrat Muller
Affiliation: Prof. Elhanan Borenstein Lab, Tel Aviv University
Position: Doctoral Candidate
Hosted by: Jennifer Dawkins, Gerber Lab

The human gut microbiome, and its metabolic activity in particular, have been implicated in a wide range of disease states, including metabolic disorders, inflammatory bowel diseases, and colorectal cancer. This growing appreciation for the impact of the gut microbiome’s metabolism on human health has given rise to studies that generate both microbiome and metabolome high-throughput data from human gut microbiome samples. Truly integrated analysis of both omic datasets, however, remains a challenging task. My research aims to develop new frameworks for analyzing and integrating these datasets using a combination of machine learning, metabolic modeling, and network analysis. I’ll specifically present two projects: the first evaluates the robustness of microbiome-metabolome associations using machine learning and meta-analysis models; the second aims to identify “multi-omic modules” that capture both cross-omic associations and associations with disease simultaneously. Taken together, these frameworks can enhance our understanding of microbiome-metabolome connections and equip the microbiome research community with novel methods for such integrated data analysis.

Links
Google Scholar
Linkedin

Efrat Muller is a Computer Science PhD student studying computational methods for human microbiome research, under the supervision of Professor Elhanan Borenstein at Tel Aviv University.  Prior to her PhD, she worked in product management and data analysis positions at Medial EarlySign(a startup in the digital health industry) and at Intel Corporation’s Big Data and Machine Learning group.  Efrat completed a B.Sc. and M.Sc. in computer science with honors from Ben-Gurion University.  She is generally enthusiastic about any intersection of computer science, machine learning, healthcare and well-being.

Efrat received the EMEA Google Generation Scholarship (2022), Edmond J. Safra Center Excellent Research Student Prize (2022), Naamat scholarship for female PhD students (2022), and prizes for excellence in teaching (Discrete Math course for CS students, 2019-2021).

Click here to be added to our mail list.

Mahmood Lab’s Pan-cancer integrative histology-genomic analysis is featured on cover of Cancer Cell

Mahmood Lab’s Pan-cancer integrative histology-genomic analysis is featured on cover of Cancer Cell

The rapidly emerging field of computational pathology has demonstrated promise in developing objective prognostic models from histology images. However, most prognostic models are either based on histology or genomics alone and do not address how these data sources can be integrated to develop joint image-omic prognostic models. Additionally, identifying explainable morphological and molecular descriptors from these models that govern such prognosis is of interest. We use multimodal deep learning to jointly examine pathology whole-slide images and molecular profile data from 14 cancer types. Our weakly supervised, multimodal deep-learning algorithm is able to fuse these heterogeneous modalities to predict outcomes and discover prognostic features that correlate with poor and favorable outcomes. We present all analyses for morphological and molecular correlates of patient prognosis across the 14 cancer types at both a disease and a patient level in an interactive open-access database to allow for further exploration, biomarker discovery, and feature assessment.

Chen RJ, Lu MY, Williamson DFK, Chen TY, Lipkova J, Noor Z, Shaban M, Shady M, Williams M, Joo B, Mahmood F. Pan-cancer integrative histology-genomic analysis via multimodal deep learning. Cancer Cell. 2022 Aug 8;40(8):865-878.e6. doi: 10.1016/j.ccell.2022.07.004. PMID: 35944502.

Mahmood Lab’s study on AI-based cancer origin prediction using conventional histology is published in Nature

Mahmood Lab’s study on AI-based cancer origin prediction using conventional histology is published in Nature

Cancer of unknown primary (CUP) origin is an enigmatic group of diagnoses in which the primary anatomical site of tumour origin cannot be determined1,2. This poses a considerable challenge, as modern therapeutics are predominantly specific to the primary tumour3. Recent research has focused on using genomics and transcriptomics to identify the origin of a tumour4–9. However, genomic testing is not always performed and lacks clinical penetration in low-resource settings. Here, to overcome these challenges, we present a deep-learning-based algorithm—Tumour Origin Assessment via Deep Learning (TOAD)—that can provide a differential diagnosis for the origin of the primary tumour using routinely acquired histology slides. We used whole-slide images of tumours with known primary origins to train a model that simultaneously identifies the tumour as primary or metastatic and predicts its site of origin. On our held-out test set of tumours with known primary origins, the model achieved a top-1 accuracy of 0.83 and a top-3 accuracy of 0.96, whereas on our external test set it achieved top-1 and top-3 accuracies of 0.80 and 0.93, respectively. We further curated a dataset of 317 cases of CUP for which a differential diagnosis was assigned. Our model predictions resulted in concordance for 61% of cases and a top-3 agreement of 82%. TOAD can be used as an assistive tool to assign a differential diagnosis to complicated cases of metastatic tumours and CUPs and could be used in conjunction with or in lieu of ancillary tests and extensive diagnostic work-ups to reduce the occurrence of CUP.

Lu, M.Y., Chen, T.Y., Williamson, D.F.K. et al. AI-based pathology predicts origins for cancers of unknown primary. Nature 594, 106–110 (2021). https://doi.org/10.1038/s41586-021-03512-4